

Broadband Delay and Evolution of the VGOS Network

Arthur Niell
MIT Haystack Observatory

Outline

- Short history of geodetic VLBI given by ARW this morning
- VLBI2010 (IVS WG3)
 - Drivers
 - □ Objectives
 - □ Design
- Implementation on GGAO12M and Westford
- Observation, correlation, and analysis
- Global VGOS network evolution

Special thanks

- Chris Beaudoin, Chris Eckert, Mark Derome Broadband signal chain design and implementation
- Chet Ruszczyk, Jason Soohoo, Mike Poirier, Katie Pazamikas, Jay
 Redmond, Russ McWhirter observing session setup and operation
- Ed Himwich antenna checkout for GGAO12M and Westford and Field Station modification for Broadband
- John Gipson *sked* modification
- Mike Titus correlation (understatement of effort!)
- Brian Corey station performance analysis and amplitude calibration
- Roger Cappallo difx and fourfit modifications
- David Gordon data base modification and creation
- Sergei Bolotin *nuSolve* creation and processing
- Bill Petrachenko brilliant ideas, continued encouragement
- Many others!

Why do we need a next generation VLBI observing system?

Aging systems (now ~35 years old):

- Old antennas
- Obsolete electronics
- Costly operations
- RFI

2015 May 4

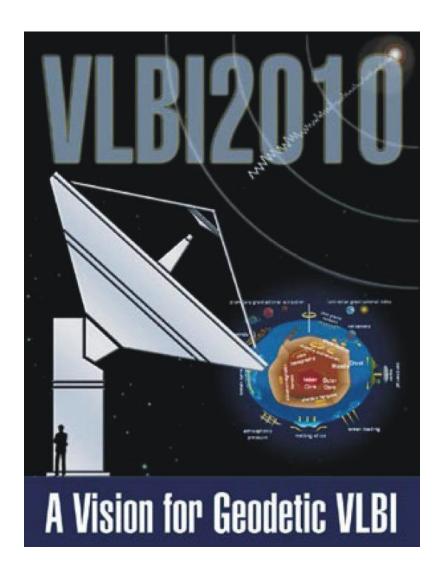
Emerging Technology:

- Fast antennas
- Digital electronics
- Hi-speed networks
- Automation


New system

- Sea level rise
- Earthquake processes
- 1-mm accuracy

TOW2015



Courtesy Bill Petrachenko

IVS WG 3 report (2005)

http://ivscc.gsfc.nasa.gov/about/ wg/wg3/IVS_WG3_report_05091 6.pdf

VLBI2010 Recommendations

1-mm position accuracy

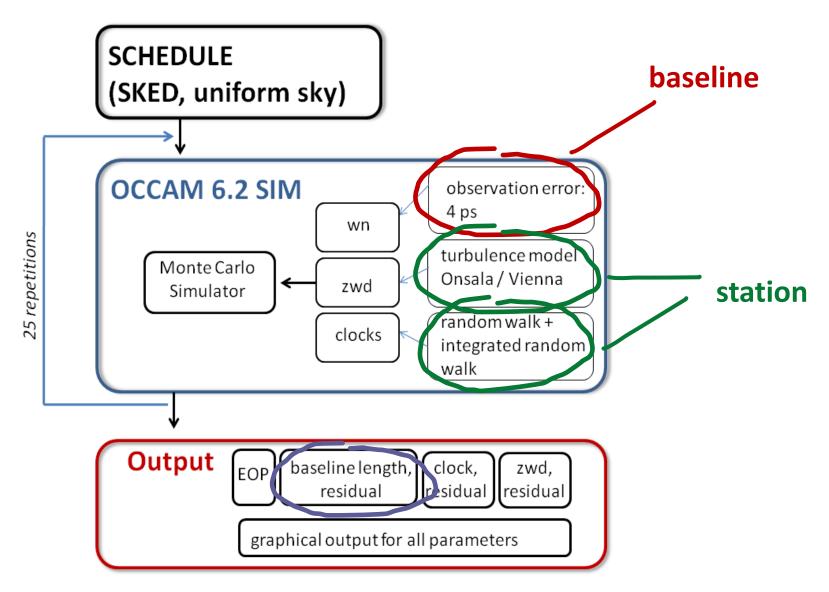
Need to reduce systematic errors

Acquire many more observations per day by using:

- fast slewing, compact antennas (12°/s Az; 6°/s El)
- short on-source integrations (5-10 sec)
 - very high data rates (16 Gbps or more)
 - new "Broadband" systems to get high delay precision at modest SNR

VGOS Goals

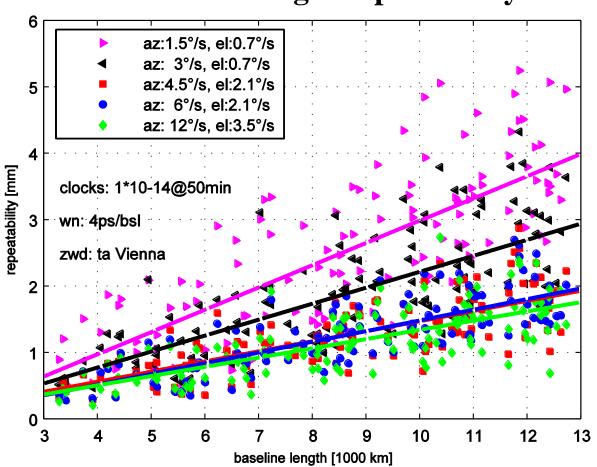
Continuous measurements of station position and EOP Reduce operational costs in all areas


- Increase remote control of stations
- Increase automation of both stations and analysis

Turn-around time to initial products <24 hours

- e-VLBI wherever possible using improved networks
- Solve last km access issues to more sites

Strive for good global distribution of stations


VLBI2010 – Monte Carlo simulations

7

Baseline length repeatability

16 antennaszwd:turbulencemodel -Vienna

clocks:

1·10⁻¹⁴@50min

wn: 4psec/bsln

Frequency/antenna issues - 1

- Atmosphere error
 - ☐ Increase number of scans per hour

 - Faster antennas → smaller antennas

 - Smaller antennas → lower sensitivity
 - ☐ Retrieve sensitivity
 - → Higher data rate
 - → Increase recorded bandwidth
 - Reduce delay uncertainty
 - → Wider spanned bandwidth

Frequency/antenna issues - 2

- Radio source structure error
 - ☐ Desired: use most point-like radio sources

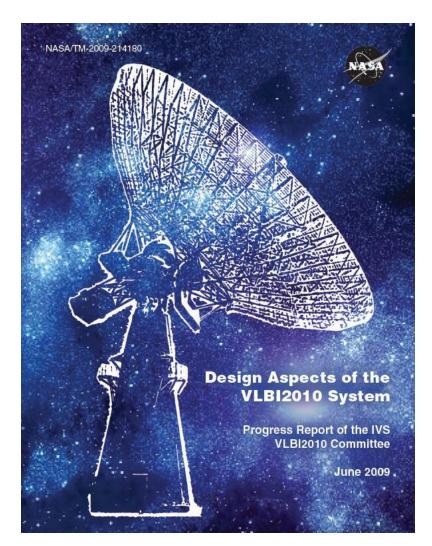
■ Simpler structure → higher frequency

■ Higher frequency → weaker sources

→ more atmosphere loss and noise

→ more accurate antenna structure

→ more expensive

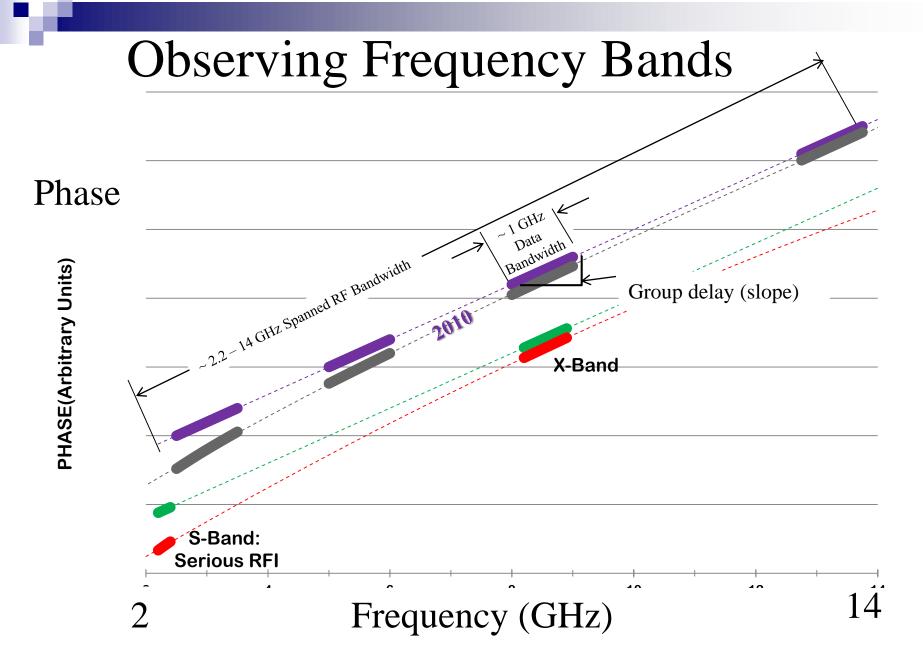

■ → Compromise required on highest frequency to use!

TOW2015 10 2015 May 4

VLBI2010 – V2C Progress Report

"Design Aspects of the VLBI2010 System"

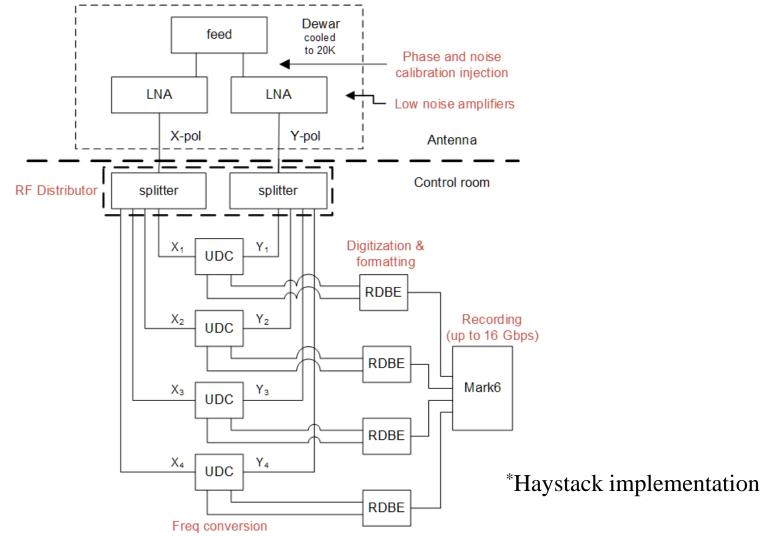
ftp://ivscc.gsfc.nasa.g ov/pub/misc/V2C/TM -2009-214180.pdf


Proposed system characteristics - 1

- Antenna and receiver
 - ☐ Frequency range
 - 2.2 to 14 GHz (minimum)
 - ☐ Minimum slew speed
 - Azimuth: 12 degrees/sec
 - Elevation: 5 degrees/sec
 - Diameter
 - 12 meters or larger
 - Sensitivity
 - 2500 Jy or less (Tsys less than 50K)

Proposed system characteristics - 2

- Radio frequency and data acquisition
 - ☐ Frequency bands
 - Four or more bands
 - Bandwidth 1 GHz each band
 - ☐ Frequency agility
 - Require tunability of bands to mitigate RFI
 - □ Polarization
 - Dual polarization (not necessarily linear)
 - □ Electronics
 - Digital where possible



S/X – Broadband Differences

Characteristic	S/X	Broadband
Number of bands	2	4
Frequency range	2.2 - 9 GHz	2.2 -14 GHz
Data rate	0.512 Gbps	16 Gbps (8 now)
Polarization	single circular	dual (linear)
Backend	analogue	digital
Antennas	large/slow	smaller/fast

2015 May 4 TOW2015

Broadband System Diagram*

16 2015 May 4 TOW2015

MIT Haystack / NASA Implementation

- Prototype systems
 - □ 12-meter Patriot antenna at GGAO and 18-meter Westford antenna at Haystack
 - QRFH feed and two Caltech LNAs
 - Separate low- and high-band RF downlinks for each polarization
 - Four RDBE-G digital backends
 - One Mark6 recorder

Patriot 12M Antenna @ GGAO

2015 May 4 TOW2015

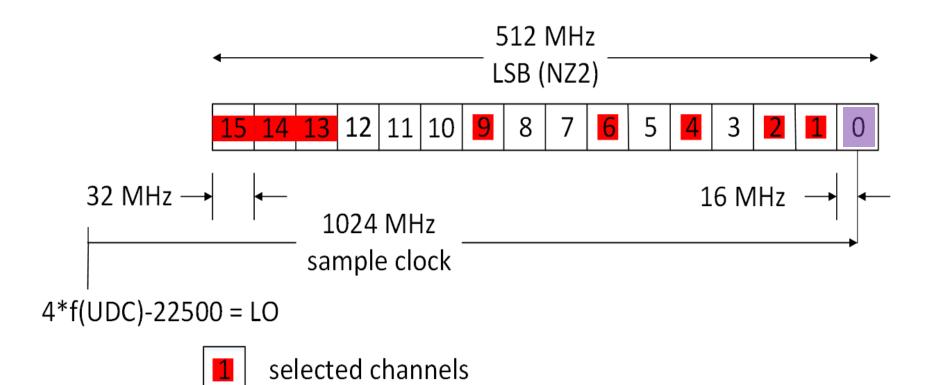
Broadband observing - 1

- **■** Geodetic VLBI session procedures
 - \square Schedule (*sked*)
 - Observe
 - Correlate
 - □ fourfit
 - □ calc/nuSolve
- Highlight differences for Broadband

2015 May 4 TOW2015

Broadband observing - 2

- Schedule (sked)
 - New broadband section added to allow for Mark6 recording
 - 8 Gbps onto single module
 - Buffering time of about scan length required
 - ☐ Modify input parameters to compensate for high data rate in each band
 - □ Use S-band and X-band flux densities but 3GHz and 10GHz system characteristics to calculate minimum scan lengths


Broadband observing - 3

Data acquisition format

- ☐ Four bands with two polarizations each band
 - Total data rate 2 Gbps per band (1 Gbps per polarization)
 - Only 15 good channels per pol'n for polyphase filter bank (PFB) but get 16 channels per band using half of the channels in each band.
 - See next figure
 - □ Layout for 16*32MHz recording
 - ☐ Minimum redundancy frequence per band

Frequence (frequency sequence)

Broadband correlation - 1

Correlation procedures

- □ *gather* Mark6 data from raw format to linux files
- □ Correlate all four bands simultaneously (soon) (or each band separately and then *fourmer* into one file)
- □ Correlate HH/VV/HV/VH within each band

Broadband correlation - 2

Correlation procedures (cont'd)

- Extract all phase cal tones for every channel in both polarizations
 - Six or seven tones for each channel
 - Use all non-corrupted tones for multitone phase cal delay and phase for each channel (exclude tones with spurious signals)
- □ Run *difx2mk4* on correlator output files to allow additional processing with the standard HOPS package (as used for S/X geodesy)

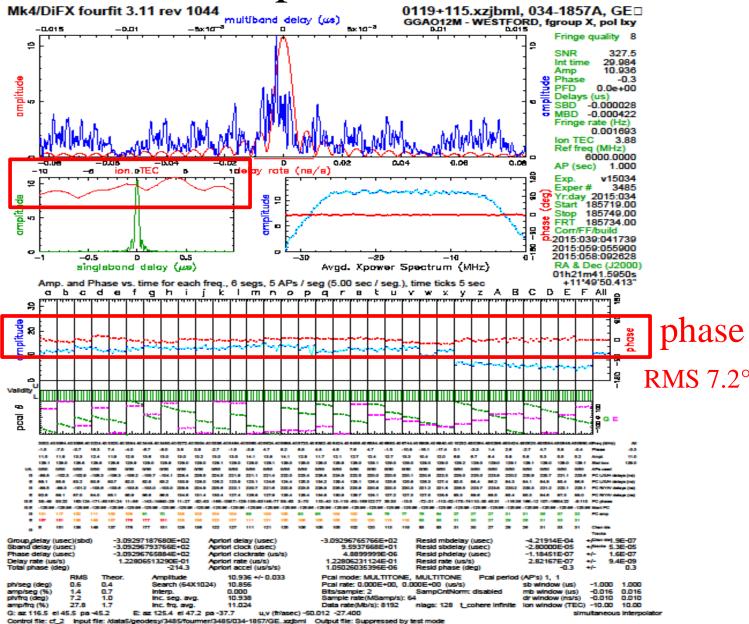
fourfit differences between broadband and S/X

Phase cal

- ☐ Multitone peal is now default so not different for broadband, but it is required for aligning the four bands.
- Must account for round-trip cable delay to less than about one quarter of the multitone delay ambiguity (1/4 * 200 nsec for 5 MHz spacing): therefore input *a priori* cable delay for each station.

Uncalibrated delay and phase offsets between polarizations

□ Correct for RF path length through the feed and before phase cal injection.



■ *fourfit* (assume 64-ch correlation)

- ☐ Use all four polarization products to determine delay and phase differences between polarizations for each antenna
 - fourfit one or more strong sources for HH and VV to determine dTEC
 - fourfit HV and VH at that dTEC to get delay and phase differences between polarizations for each antenna
 - fourfit all 128 channels (4 bands * 8 channels * 4 pol'n products) to estimate group delay and consistent total electron content difference (dTEC) between the sites
- ☐ Example *fourfit* plot in next slide

.

Combined polarization data

dTEC

Samplers: abcdefgh (kimnop grstuvwx yzABCDEF

Post-correlation analysis - 2

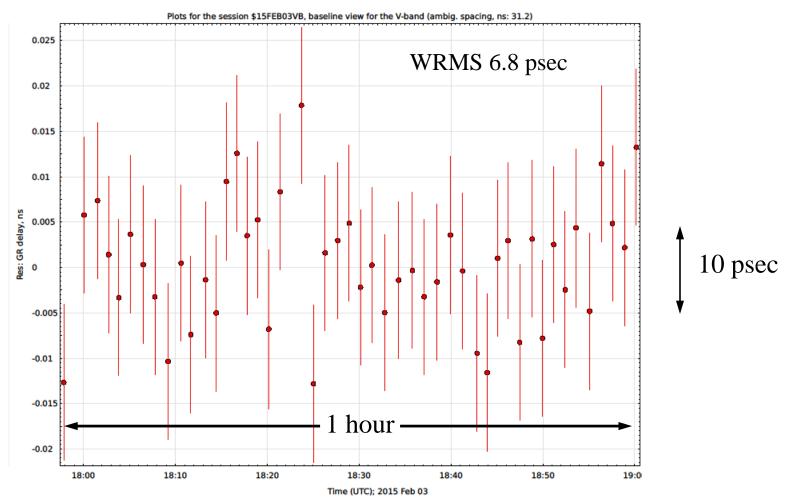
■ calc/nuSolve

- Create database
- ☐ (Currently) use nuSolve for preliminary analysis
 - Single time interval for full session
 - Estimate:
 - □ Position of GGAO (Westford fixed)
 - □ Clock offset at GGAO (plus second order polyn)
 - ZWD at one site (since baseline is so short)
 - ☐ Troposphere gradient at both sites

Recent observations - 1

VGOS Data Series

- □ Work towards operational broadband observing.
- □ Have observed one hour sessions about every two weeks since 2014 December (7 successful sessions).
- ☐ The most recent sessions have been run under Field System control, including UDCs, RDBEs, and Mark6.
- □ Center frequencies for the four bands:3.3 GHz 5.5 GHz 6.6 GHz 10.5 GHz



Recent observations - 2

VGOS Data Series (cont'd)

- ☐ Median delay uncertainty per scan is ~1 psec.
- □ Correction for phase variation across the bands and with time would raise this to a few psec (see previous 64-channel *fourfit* figure).
- □ With re-weighting by additive delay to the geodetic estimation, the WRMS post-fit delay residual is typically 6 psec (compared to a few times 10 psec for current S/X sessions using ~20-meter antennas).

Post-fit delay residuals V15034 2014FEB03 48/50 obs retained

Recent observations - 3

VGOS Data Series (cont'd)

- □ Baseline length is 601 km.
- ☐ For six sessions, the position uncertainties for GGAO with 1 to 1.5 hours of data are:
 - Up/East/North (UEN): 3-7 mm, 1-2 mm, 1-2 mm
 - Length: 1-2 mm
- ☐ The RMS scatters in components and length are approximately :
 - UEN: 4 mm, 2 mm, 2 mm
 - Length: 1 mm

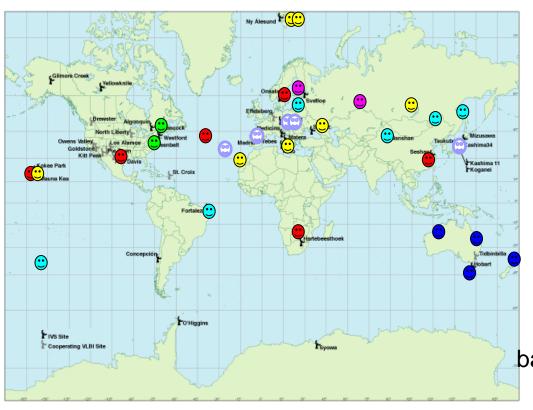
Yet to do or understand (partial)

Instrumentation

- Add cable delay measurement systems.
- □ Upgrade UDCs to Kokee version.
- □ What causes freq. dependent phase distortion?

Analysis/understanding

- □ How should the broadband delay uncertainty be determined for input to estimation?
- □ How can sky coverage be improved in scheduling programs?
- □ What is the best way to determine the polarization delay and phase offsets?

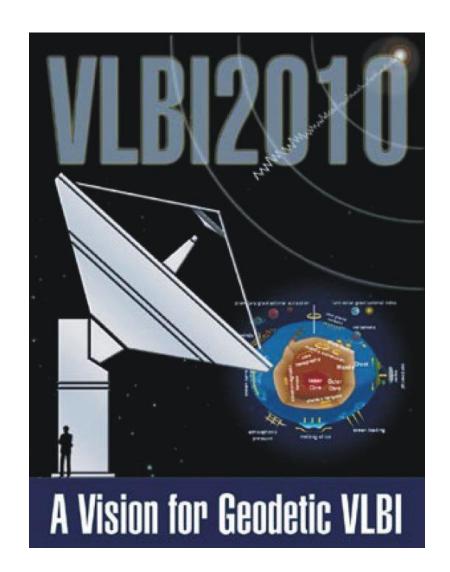

VGOS network evolution

- What are the prospects for full VGOS network?
 - □ Only one pair of antennas is doing Broadband VLBI.
 - □ VGOS-potential antennas operating but not yet Broadband:
 - Auscope (3)
 - Ishioka
 - New Zealand
 - Russia network (3)?
 - Santa María (Açores) (almost operating)
 - Wettzell (2)
 - Yebes
 - (Who did I miss?)

VGOS World

update needed!

New VGOS radio telescopes for IVS


Broadband capable

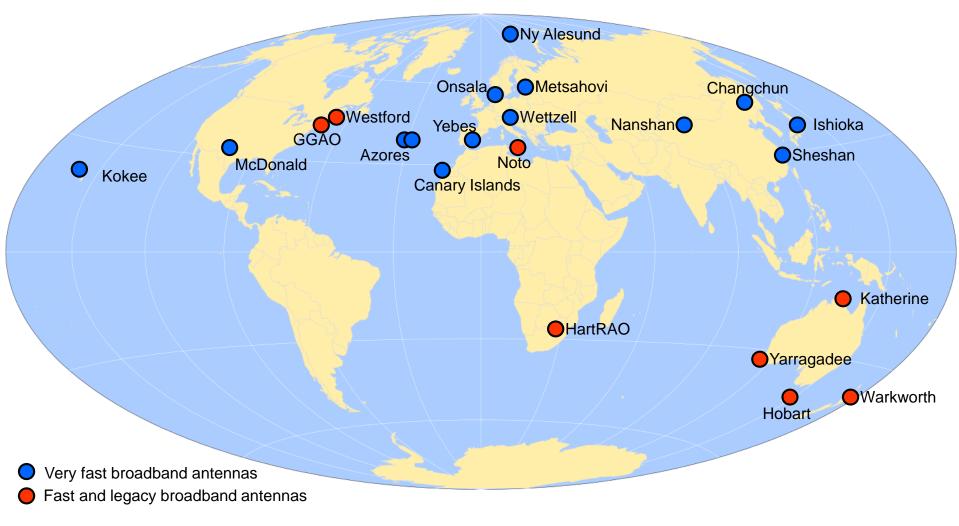
- operational broadband
- under construction
- funded
- proposal submitted
- planning phase
- planning phase upgrade
- operational S/X/Ka

based on information available February 2014

original from Hayo Hase

To do:

Timing figure for 5MHz/downlink cable delay
Polarization delay offset figure



VLBI2010 Recommendations

- 1-mm position accuracy on global scales
- Continuous measurements for time series of station positions and Earth orientation parameters
- Turnaround time to initial geodetic results of less than 24 hours

VGOS Network anticipated for 2017

Strong in the North Polar Region Weaker in the Americas and Pacific Region

